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3. Introduction 

1.Abstract 

A new coronavirus disease, called COVID-19, appeared in the Chinese region of Wuhan at the end of 

last year; since then the virus spread to other countries, including most of Europe. We propose a 

differential equation governing the evolution of the COVID-19. This dynamic equation also de- 

scribes the evolution of the number of infected people for 13 common respiratory viruses (including 

the SARS-CoV-2). We validate our theoretical predictions with experimental data for Italy, Belgium 

and Luxembourg, and compare them with the predictions of the logistic model. We find that our 

predictions are in good agreement with the real world since the beginning of the appearance of the 

COVID-19; this is not the case for the logistic model that only applies to the first days. The second part 

of the work is devoted to modelling the descending phase, i.e. the decrease of the number of people 

tested positive for COVID-19. Also in this case, we propose a new set of dynamic differential equations 

that we solved numerically. We use our differential equations parametrised with experimental data to 

make several predictions, such as the date when Italy, Belgium, and Luxembourg will reach a peak 

number of SARS-CoV- 2 infected people. The descending curves provide valuable information such 

as the duration of the COVID-19 epidemic in a given Country and therefore when it will be possible 

to return to normal life. 

We find ourselves in a global pandemic, referred to as COVID-19. There is much research underway 

on all aspects of the pandemic, including to slow its spread, improve diagnostic tests, develop a vac- 

cine, and mathematical models able to foresee the dynamic of this pandemic. In this paper, we develop 

a mathematical model for the spread of the coronavirus disease 2019. By means of a very simple math- 

ematical model, we study the particular case of Italy, Belgium, and Luxembourg and we provide the 

dynamic of the descending phase, i.e. the evolution of the decrease number of people tested positive to 

the COVID-19. The predictions about the descending phase provide valuable information about the 

duration of the COVID-19 in a given Country, especially when it will be possible to return to normal 

life. The theoretical predictions are in excellent agreement with the experimental data. 

The severity of viral respiratory disease is highly variable; serious 

Viral infections usually affect the upper or lower respiratory tract. 

Although respiratory infections can be classified according to the 

causative agent (e.g. the flu), they are mostly clinically classified 

according to the type of syndrome (e.g., common cold, 

bronchiolitis, laryngo-tracheo-bronchitis acute, pneumonia). 

Although pathogens typically cause characteristic clinical 

manifestations (e.g., rhinovirus causes the common cold, 

respiratory syncytial virus [RSV] usually causes bronchiolitis), they 

can all cause many of the most common respiratory syndromes. 

illness is more frequent in elderly patients and young children. 

Morbidity can either directly result from the infecting agent, or 

may be indirect. The latter case can be due to the exacerbation of an 

underlying cardiopulmonary disease, or a bacterial superinfection 

of the lung, paranasal sinuses, or middle ear. The main motivation 

of this work is to verify, by making theoretical predictions, that 

political decisions are truly effective to minimise the number of 

infected people in order to (i) not overload local health services 

(such as hospitals), and to (ii) gain time to allow research institutes 

to deliver vaccines or the anti-virals. 
 

*Corresponding Author (s): Giorgio SONNINO, Faculté des Sciences, Université Libre de 

Bruxelles (ULB) Boulevard de Triomphe, Campus Plaine CP 2311050 Brussels, Belgium, E- 

mails: gsonnino@ulb.ac.be 

Citation: Sonnino G. Dynamics of the COVID-19 Comparison between the Theoretical 
Predictions and the Real Data, and Predictions about Returning to Normal Life. Annals of 
Clinical and Medical Case Reports. 2020; 4(9): 1-21

Volume 4 Issue 9- 2020 

Received Date: 19 Aug 2020 

Accepted Date: 03 Sep 2020 

Published Date: 08 Sep 2020 



(Table 1 and Table 3) respectively provide the experimental data 

for Italy [1] and for Belgium [2, 3]. They show the number of active 

people (i.e., people currently infected by SARS-CoV-2), the 

recovered people, and deaths for COVID-19. 

We start our theoretical analysis by introducing the definition of the 

basic re-production number of an infection R0, defined as the 

number of infected people derived from a first case in a population 

where all the others are susceptible. So, it is not possible to modify 

R0, in any case, but it is possible to get a different effective R1. This 

parameter is strictly linked to the replication time of a virus, 

indicated with µi, defined as the time interval after which the 

number of infected people has increased by R0 times. (Figure 1) 

schematically represents the diffusion dynamics of the virus. By 

indicating with N the number of infected people, after n steps we 

get2: 

 𝑁 = 𝑅0
𝑛  

                             
Figure 1: Schematic dynamics of respiratory virus in the absence of the lockdown 

measures in this graphics, for illustrative purpose only, we set R0 = 3. However, for 

SARS-CoV-2, the value of R is 2 even at the beginning of the outbreak in China and 

Italy. After a period of time μ1, an infected individual can infect R0 other 

individuals. In turn, after a period μ2, each of these newly infected individuals can 

infect other R0 people, and so on. After n steps the elapsed time is 𝑡 = ∑ 𝜇𝑖
𝑛
𝑖=1  

Table 1: Situation in Italy on 15 May 2020. Columns report the number 

of active people (currently infected by SARS-CoV-2), the number of 

recovered people, and the number of deceased people. 

Date Active Recovered 
Decease

d 
Total 

cases 

25-Feb 322 1 10 333 

26-Feb 400 3 12 415 

27-Feb 650 45 18 713 

28-Feb 888 46 21 955 

29-Feb 1049 50 29 1128 

1-Mar 1577 83 34 1694 

2-Mar 1835 149 52 2036 

3-Mar 2263 160 79 2502 

4-Mar 2706 276 107 3089 

5-Mar 3296 414 148 3858 

6-Mar 3916 523 197 4636 

7-Mar 5061 589 233 5883 

8-Mar 7375 622 366 8363 

9-Mar 9172 724 463 10359 

10-Mar 10149 1004 631 11784 

11-Mar 10590 1045 827 12462 

12-Mar 12839 1258 1016 15113 

13-Mar 14955 1439 1266 17660 

14-Mar 17750 1966 1441 21157 

15-Mar 20603 2335 1809 24747 

16-Mar 23073 2749 2158 27980 

17-Mar 26062 2941 2503 31506 

18-Mar 28710 4025 2978 35713 

19-Mar 33190 4440 3405 41035 

20-Mar 37860 5129 4032 47021 

21-Mar 42681 6072 4825 53578 

22-Mar 46638 7024 5475 59137 

23-Mar 50418 7432 6077 63927 

24-Mar 54030 8326 6820 69176 

25-Mar 57511 9362 7503 74376 
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26-Mar 62013 10361 8165 80539 

27-Mar 66414 10950 9134 86498 

28-Mar 70065 12384 10023 92472 

29-Mar 73880 13030 10779 97689 

30-Mar 75528 14620 11591 101739 

31-Mar 77635 15729 12428 105792 

1-Apr 80572 16847 13155 110574 

2-Apr 83049 18278 13915 115242 

3-Apr 85388 19758 14681 119827 

4-Apr 88274 20996 15362 124632 

5-Apr 91246 21815 15887 128948 

6-Apr 93187 22837 16523 132547 

7-Apr 94067 24392 17127 135586 

8-Apr 95362 26491 17669 139422 

9-Apr 96877 28470 18279 143626 

10-Apr 98273 30455 18849 147577 

11-Apr 102253 34211 19899 152271 

12-Apr 100269 32534 19468 156363 

13-Apr 103616 35435 20465 159516 

14-Apr 104291 37130 21067 162488 

15-Apr 105418 38092 21645 165155 

 

Table 2: Situation in Italy on 15 May 2020. Columns report the number 

of active people (currently infected by SARS-CoV-2), the number of 

recovered people, and the number of deceased people. 

Date Active Recovered Deceased Total cases 

16-Apr 106607 40164 22170 168941 

17-Apr 106962 42727 22745 172434 

18-Apr 107771 44927 23227 175925 

19-Apr 108257 47055 23660 178972 

20-Apr 108237 48877 24114 181228 

21-Apr 107709 51600 24648 183957 

22-Apr 107699 54543 25085 187327 

23-Apr 106848 57576 25549 189973 

24-Apr 106527 60498 25969 192994 

25-Apr 105847 63120 26348 195351 

26-Apr 106103 64928 26644 197675 

27-Apr 105813 66624 26977 199414 

28-Apr 105205 68941 27359 201505 

29-Apr 104657 71252 27682 203591 

30-Apr 101551 75945 27967 205463 

1-May 100946 78249 28236 207428 

2-May 100704 79914 28710 209328 

3-May 100179 81654 28884 210717 

4-May 99980 82879 29079 211938 

5-May 98467 85231 29315 213013 

6-May 91528 93245 29684 214457 

7-May 89624 96276 29958 215858 

8-May 87961 99023 30201 217185 

9-May 84842 103031 30395 218268 

10-May 83324 105186 30560 219070 

11-May 82488 106587 30739 219814 

12-May 81266 109039 30911 221216 

13-May 78457 112541 31106 222104 

14-May 76440 115288 31368 223096 

15-May 72070 120205 31610 223885 

16-May 70187 122810 31763 224760 

17-May 68351 125176 31908 225435 

18-May 66553 127326 32007 225886 

19-May 65129 129401 32169 226699 
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20-May 62752 132282 32330 227364 

21-May 60960 134560 32486 228006 

22-May 59322 136720 32616 229858 

23-May 57752 138840 32735 229327 

24-May 56594 140479 32785 229858 

25-May 55300 141981 32877 230158 

26-May 52942 144981 32955 230555 

27-May 50966 147101 33072 231139 

28-May 47986 150604 33142 231732 

Date Active Recovered Deceased Total cases 

16-Apr 106607 40164 22170 168941 

17-Apr 106962 42727 22745 172434 

18-Apr 107771 44927 23227 175925 

19-Apr 108257 47055 23660 178972 

20-Apr 108237 48877 24114 181228 

21-Apr 107709 51600 24648 183957 

22-Apr 107699 54543 25085 187327 

23-Apr 106848 57576 25549 189973 

24-Apr 106527 60498 25969 192994 

25-Apr 105847 63120 26348 195351 

26-Apr 106103 64928 26644 197675 

27-Apr 105813 66624 26977 199414 

28-Apr 105205 68941 27359 201505 

29-Apr 104657 71252 27682 203591 

30-Apr 101551 75945 27967 205463 

1-May 100946 78249 28236 207428 

2-May 100704 79914 28710 209328 

3-May 100179 81654 28884 210717 

4-May 99980 82879 29079 211938 

5-May 98467 85231 29315 213013 

6-May 91528 93245 29684 214457 

7-May 89624 96276 29958 215858 

8-May 87961 99023 30201 217185 

9-May 84842 103031 30395 218268 

10-May 83324 105186 30560 219070 

11-May 82488 106587 30739 219814 

12-May 81266 109039 30911 221216 

13-May 78457 112541 31106 222104 

14-May 76440 115288 31368 223096 

15-May 72070 120205 31610 223885 

16-May 70187 122810 31763 224760 

17-May 68351 125176 31908 225435 

18-May 66553 127326 32007 225886 

19-May 65129 129401 32169 226699 

20-May 62752 132282 32330 227364 

21-May 60960 134560 32486 228006 

22-May 59322 136720 32616 229858 

23-May 57752 138840 32735 229327 

24-May 56594 140479 32785 229858 

25-May 55300 141981 32877 230158 

26-May 52942 144981 32955 230555 

27-May 50966 147101 33072 231139 

28-May 47986 150604 33142 231732 

 

  

1More rigourously, in epidemiology, the basic reproduction number of an infection, R0, is the expected number of cases directly generated by one case in 

a population where all individuals are susceptible to infection in absence of any deliberate intervention in disease transmission (see, for example, [4]). 

 

 

 

 

Copyright ©2020 Sonnino G. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, 
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Of course, after n steps, the elapsed time is 𝑡 = ∑ 𝜇𝑖
𝑛
𝑖=1  and, 

if there are M outbreaks of infectious viruses, Eq. (1) can be 

cast into the form3 

𝑁 = 𝑀𝑅0

𝑡
𝜇⁄

                                                    (2) 

with 𝑡 = 1/𝑛 ∑ 𝜇𝑖
𝑛
𝑖=1  Note that the two parameters R0 and µ are 

not independent (see, for example, [7-9])4. It is more convenient 

to work in the Euler base e rather than in base R0; in the Euler 

base Eq. (2) provides the law of growth of a Malthusian 

population [5]. 

𝑁 = 𝑀 exp(𝑡/𝜏)  where 𝜏 =
𝜇

log (𝑅0)
                         (3) 

In literature, τ is referred to as the characteristic time of the 

exponential trend. So, in the absence of containment measures 

the number of infected people follows the exponential law (3). 

Let us now analyse Eq. (3) in more dept. We have three possible 

scenarios: 

1. R0 > 1 (as is the current world’s situation). For Italy, for 

example, before the adoption of (severe) containment measures, 

the value of τ was about 𝜏~3.8 days (and µ ~ 2.6 days). In this 

case the number of the infected people increases exponentially. 

2. R0 = 1 If the infection-capacity of the virus is of the type one-

to-one (i.e., a person infected by SARS-CoV-2 can in turn 

infects only another person), we get the stationary situation 

corresponding to N = 1. This situation is referred to as the latent 

situation i.e., the virus is still present but does not spread. In this 

limit case, the SARS-CoV-2 is substantially ineffective. 

Scenarios (1) and (2) are illustrated in (Figure 2). 

                     

Figure 2: Situation before the lockdown measures. Number of infected people 

corresponding to the exponential law. The red line represents the case R0 > 1, 

such as the situation before the adoption of lockdown measures. The black line 

corresponds to the case R0 = 1, the latent situation in which the virus is 

substantially ineffective. 

3. 0 < R0 < 1. We may also imagine that the capacity of 

infection of SARS-CoV-2 is less than 1. This means that the 

virus is no longer able to be spread (e.g., thanks to protective 

measures, or to the production of vaccines and anti-virals, or 

because people who overcame the disease became immune. In 

this case, the value of τ is negative and the number of infected 

people decreases ever time. That is, the infection eventually 

disappears. The rate of decrease of the number of infected 

people depends on the value of τ. This scenario is depicted in 

(Figure 3). 

                
Figure 3: Number of infected people corresponding to the exponential law. 

The red line represents the case R0 < 1. In this situation the number of 

infected people decreases exponentially and the virus disappears after a 

few weeks.  

4. Comparison with the Real Data for COVID-19 before 

the Lockdown Measures 

From a mathematical point of view, we would like to have 

R0 = 1 (or, better, R0 < 1), in Eq. (3) instead of R0 > 1. In 

practical terms, this means reducing the frequency of all 

involuntary It   is understood that the main objective of the 

lockdown measures established by most European 

governments and health organisations is to reduce the ability 

of a virus to spread. contacts with a large number of 

2In this Section we shall follow the definitions and the expressions reported in standard books or thesis dissertation such as, for example, [5, 6]. 

3Actually, Eq. (2) applies only if the M outbreaks of the virus are exactly at the same conditions. In general, the correct expression reads 𝑁 = ∑ 𝑅0
𝑡 𝜇̃𝑖⁄𝑀

𝑖=0  

with 𝜇̃𝑖 indicating the replication time of the virus for the i-th outbreak. 

4In ref. [7], the doubling time is used to calculate R0, by means of the equation R0 = 1 + (γ + ρ) log (2)/µ where γ is the duration of the incubation period, ρ 

is the duration of the symptomatic period, and µ is the doubling time (see [7]). In this respect, we would also like to mention another excellent work recently 

produced by G. Steinbrecher [9] (Figure 2 and 3). 
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People, reducing unnecessary movements to avoid enc-

ounters, and to prolong the closure of schools. Although these 

measures cannot prevent the spread of the infection in the long 

term, they can reduce the number of new infections daily. This 

has the benefit of leaving room for seriously-ill patients by 

avoiding to overload the healthcare system. We can easily 

realise what are the consequences if the lockdown measures 

are not set up. To make a comparison between the theoretical 

predictions and the experimental data in absence of lockdown 

measures, we have to consider the correct reference period. 

More specifically, we saw that the number of positive cases 

grows in the course of time by following the law (3). Hence, 

at the reference time t0, the number of people infected by the 

virus is 

𝑁0 = 𝑀exp(𝑡0/𝜏)                                                  (4) 

After a period of time, say t, Eq. (3) reads 

𝑁 = 𝑀 exp(𝑡/𝜏)                                                                (5) 

Hence, 

𝑁 = 𝑁0𝑀exp(𝑡 − 𝑡0/𝜏)                                                     (6) 

Eq. (6) is the equation that we use for comparing the 

mathematical predictions with experimental data during the 

initial phase where the spread of SARS- CoV-2, causing the 

COVID-19, follows the exponential law, and (t-t0) is our 

reference period. For the case of COVID-19 we get (see, for 

example, [5, 6]) 

All infectious outbreaks are exactly at the same conditions. So, 

Eq. (2) applies; 

R0 = 2; 

All the µi are equal with each other: µi = const = µ (see also [5, 

7]). 

In this case, µ is referred to as the doubling time. So, the 

doubling time is the amount of time it takes for a given 

quantity to double in size or value at a constant growth rate 

[8]. If we do not apply the locking measures, the evolution in 

the course of time of the number of infected people is best 

approximated by an exponential curve with R = 2, even 

though we have to stress that R0 is only associated with the 

beginning of the epidemic and, with certain approximations, 

with the early stages, but not beyond. (Figure 4 and Figure 5) 

respectively show the comparison between the theoretical 

predictions and the experimental data for Italy and Belgium 

before the lockdown measures. We get τ ≃ 3.8 days and µ ≃ 

2.6 days for Italy, and τ ≃ 5.2 days and µ ≃ 3.7 days for 

Belgium. We conclude this Introduction by mentioning that 

there are several methods currently proposed in Literature to 

derive by mathematical models, the value of R0. For example, 

in ref. [9], we have a short numerical code, written in R-

programming language for statistical computing and graphics, 

able to compute the estimated R0 values for the following 17 

infectious diseases: Chickenpox (varicella) (Transmission: 

Aerosol), Common cold (Transmission: Respiratory 

Droplets), COVID-19 (Transmission: Respiratory Droplets), 

Diphtheria (Transmission: Saliva), Ebola - 2014 Ebola 

outbreak (Transmission:: Body fluids, HIV/AIDS 

(Transmission: Body fluids), Influenza - 1918 pandemic 

strain (Transmission:: Respiratory Droplets), Influenza - 2009 

pandemic strain (Transmission: Respiratory Droplets, 

Influenza - seasonal strains (Transmission: Respiratory 

Droplets), Measles (Transmission: Aerosol), MERS 

(Transmission: Respiratory Droplets), Mumps 

(Transmission: Respiratory Droplets), Pertussis 

(Transmission: Respiratory Droplets), Polio (Transmission: 

Fecal oral route), Rubella (Transmission: Respiratory 

Droplets), SARS (Transmission: Respiratory Droplets), 

Smallpox (Transmission: Respiratory Droplets). However, 

this task is particularly problematic if there are intermediate 

vectors between hosts, such as malaria. 

This manuscript is organised as follows. Section (2) 

determines the dynamic differential equation for the COVID-

19; Section (2.3) compares the theoretical predictions and 

experimental data for Italy and Belgium. The differential 

equations providing the evolution of the decrease of the 

number of people tested positive for COVID-19 can be found 

in Section (3); Section (4) concludes. The comparison 

between the theoretical predictions of our model and 

experimental data for Luxembourg, as well as the solution of 

the differential equations in the descending phase for 

Luxembourg are reported in Appendix. We may object that 

we are dealing data from countries which have passed the 

peak of infection, such as South Korea, Iceland or Austria etc. 

The situation in other Countries, which may have adopted 

other political decisions about the application of the lockdown 

measures, may be subject of future works. However, we 

would like to mention that several authors are currently 

applying our model to other Countries. In this regard, we have 

received their pre-prints such as the work cited in Ref. [11]. 

More specifically, we have received a message where our 

model has been used, with success, to analyse data from UK, 

USA, NY City, Spain, and Mumbai City. We stress the fact 

that this manuscript deals with the spread of SARS-CoV-2 

until May 16, 2020, as the objective of this work is to study 
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the effect of the strict lockdown measures. After May 2020, 

these measures have been modified by the various 

Governments, which have decided to introduce less heavy and 

much less restrictive lockdown measures5. 

          
Figure 4: Number of infected people in Italy on the 10th of March 2020 (before 

the adoption of lockdown measures). The blue line corresponds to the theoretical 

predictions and the black dots correspond to experimental   data.  The  values of 

the  parameters  𝜏𝑙𝑇and  𝜇𝑙𝑇  are 𝜏𝑙𝑇 ≃ 3.8 days and 𝜇𝑙𝑇 ≃ 2.6 days, respectively. 

           
Figure 5: Exponential phase in Belgium. The lockdown measures have been 

adopted on the 16the of March 2020 (however, initially not so strict as in Italy). 

The red line corresponds to the theoretical predictions and the black dots 

correspond to experimental data. The values of the parameters 𝜏𝐵𝐸 and 𝜇𝐵𝐸 are 

𝜏𝐵𝐸 ≃ 5.3 days and 𝜇𝐵𝐸 ≃ 3.7 days, respectively. 

5. Modelling the COVID-19 - Virus’ growth 

The objective of this section is to determine the coefficients of 

the evolutionary differential equation for the COVID-19 (see the 

forthcoming Eq. (13)). We also determine the generic analytical 

expression for the time-dependent number of infected people 

through fitting techniques validated by the χ2 tests. This 

expression is proposed after having previously analysed 12 

respiratory infectious diseases caused by viruses [10], in 

addition of being solution to the Richard’s differential equation. 

5.1 General Background 

Letting N represent population size and t represent time, the 

Logistic model model is formalised by the differential 

equation below: 

 
𝑑𝑁

𝑑𝑡
= 𝛼𝑁 (1 −

𝑁

𝐾
)                                                    (7) 

where α > 0 defines the grow rate and K > 0 is the carrying 

capacity. In this equation, the early, unimpeded growth rate is 

modelled by the first term +αN. The value of the rate α 

represents the proportional increase of the population N in one 

unit of time. Later, if the system is closed (i.e. the system is 

isolated and, hence, not in contact with a reservoir allowing 

the system to exchange individuals), as the population grows 

the modulus of the second term, α N2/K, becomes almost as 

large as the first, until to saturating the exponential growth. 

This antagonistic effect is called the bottleneck, and is 

modelled by the value of the parameter K. The competition 

diminishes the combined growth rate, until the value of N 

ceases to grow (this is called maturity of the population). The 

solution of Eq. (7) is 

𝑁(𝑡) =
𝐾

1+𝐵exp(−𝑡
𝑇⁄ )

                                                    (8) 

where B > 0 is a constant related to the value of N (0). It is 

more convenient to rewrite Eq. (8) in terms of the initial 

Logistic time t0L defined as 

𝑡0𝐿 = 𝜏log𝐵                                                     (9) 

So, Eq. (8) may be cast into the form 

𝑁(𝑡) =
𝐾

1+exp(−
(𝑡−𝑡0𝐿

𝜏⁄ )
                                                  (10) 

where τ is linked to the steepness of the curve. Since the 

environmental condi- tions influence the carrying capacity, as 

a consequence it can be time-varying, with K(t) > 0, leading 

to the following mathematical model (see, for example, [12]): 

𝑑𝑁

𝑑𝑡
= 𝛼𝑁 (1 −

𝑁

𝐾(𝑡)
)                                                 (11) 

occurs. The phenomenological logistic function is used to 

model the evolution of the COVID-19 pandemic in different 

Countries. The logistic model is mainly used in More 

generally, the growth modelling is well described by  

5The study of the dynamics of COVID-19 when the population is subjected to less restrictive measures is beyond the scope of this work and it will be subject 

of future studies. 
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Richards’ differential equation (RDE) [13] 

𝑑𝑁

𝑑𝑡
= 𝛼𝑁 (1 − (

𝑁

𝐾(𝑡)
)

𝑣

)                                                   (12) 

where ν > 0 affects near which asymptote maximum growth 

epidemiology and provides insights into the transmission 

dynamics of the virus. We note, however, to evaluate the 

dynamics of transmission of SARS-CoV-2, more refined models 

are needed, which take into account specific measures adopted in 

each Country [14]. So, let us suppose that the Government 

decides to adopt the lockdown measures. After the application of 

the lockdown measures the equation may be revised to be 

𝑑𝑁

𝑑𝑡
= 𝛼𝑁 (1 − (

𝑁

𝐾(𝑡)
)

𝑣

) − 𝑐(𝑡)𝑁                                    (13) 

where c(t) takes into account the degree of effectiveness of the 

lockdown measures. 

5.2. Determination of the Carrying Capacity and the 

Lockdown Coefficient for the COVID-19 

According to ref. [15]6 Respiratory viruses remain quiet for 

months, inactive but viable, within living cells. Then suddenly 

they activate and become virulent as they say, the infectious 

capacity grows to a maximum, after which it decreases. The time 

duration is about of 2 or 3 months. So we can expect that the 

epidemic will soon die out in Italy too. So, there is no valid reason 

to think that this coronavirus behaves differently from others 

[15]. The present work starts from the following hypothesis: the 

SARS-CoV-2 behaves like the other viruses that cause 

respiratory diseases. As a consequence, for the COVID-19 case, 

functions K(t) and c(t) are determined by performing several 

fittings on the growth rate-trends of infection capacity of the 

viruses that mainly affect the respiratory system. More 

specifically, we considered the following 13 different diseases 

caused by 12 different viruses: Whooping Cough (Pertussis), 

Swine Flu (H1N1), Bird Flu (Avian Flu H5N1), Enterovirus, Flu 

in Children, Flu in Adults, Bacterial Pneumonia, Viral 

Pneumonia, Bronchitis, Common Cold (Head Cold), Severe 

acute respiratory syndrome (SARS), and MERS (Middle East 

Respiratory Syndrome). In all the examined cases, we took into 

account the fact that the therapy-induced death rate is greater than 

the baseline proliferation rate, then there is the eradication of the 

disease. In other words, for the above-mentioned cases the 

function 

c(t) in Eq. (13) represents the therapy-induced death rate [16, 24]. 

Of course, this is an oversimplified model of both the growth and 

the therapy (e.g., it does not take into account the phenomenon of 

clonal resistance). We empirically noticed (according to the χ2 

test) that all these viruses have in common the same growth rate-

trend of infected people (of course, each of these behaviors have 

their own growth rate parameters). In particular, we get that the 

trends of the total number of infected people by respiratory 

viruses (indicated with N), subject to the therapy-induced death 

rate, versus time satisfy the following 

O.D.E. [10] 

𝑑𝑁

𝑑𝑡̂
= 𝛼𝑁 (1 −

𝑁

𝐾𝑁
) − (

𝛼𝑡̂
2

−1
𝑡̂

) 𝑁 with 𝑡̂ > 1 𝛼1 2⁄⁄        (14) 

where we have introduced the dimensionless time ^t ≡ t/t0. The 

coefficient 

𝑐(𝑡) ≡ (
𝛼𝑡̂2−1

𝑡̂
)     with     𝑡̂ > 1 𝛼1 2⁄⁄                             (15) 

is referred to as the average therapy-induced death rate. In our 

case the term c(t)N in the dynamic equation represents the 

lockdown measures. The lockdown is mainly based on the 

isolation of the susceptible individuals, eventually with the 

removal of infected people by hospitalisation7. In the idealised 

case, 

for 𝛼𝑡̂2 > 1, c(t) may be modelled as a linear function of 𝑡̂, by 

getting 

𝑐(𝑡̂) =  𝛼𝑡̂                                                   (16) 

As for the epidemiological explanations relating to the various 

modelling of c(t) (constant, linear in time etc.), we refer the reader 

to the well-known and extensive literature on the subject (see, for 

example, Ref [25] or to the references cited in [26]). Here, we 

limit ourselves to give a very intuitive explanation on the physical 

meaning of this contribution Immediately after the lockdown 

measures have been adopted, i.e. during the very first initial 

6Prof. Roberto Ronchetti is currently working at the Pediatric Clinic of La Sapienza of the University of Rome, at the Policlinico Umberto I and at the S. 

Andrea 24 March Hospital where he helped to found, dealt with childhood respiratory diseases, and studied bronchiolitis in particular. In these days he has 

studied (with his collaborators) the data available on SARS-CoV-2 in China, in South Korea and now in Italy. 

7It is worth mentioning that initially England did not adopt any lockdown measures believing that the British system be a closed system. Basically, it was 

believed that the system be governed by a simply logistic equation with a carrying capacity constant or decreasing in time. However, contrary to the 

expectations, in England the carrying capacity did not decrease in time. This induced the British government to adopt the lockdown measures.
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phase, we expect that c(𝑡̂,) is practically constant in time, as these 

measures have not yet been able to act effectively. However, 

after a short period of time, the positive effects of the lockdown 

measures become increasingly efficient and it is intuitive to 

expect a linear growth of c(𝑡̂) in time. More specifically, we 

expect that, after a short transition period the coefficient c(𝑡̂) 

starts to grow linearly in time. Successively, at the leading order, 

c(𝑡̂,) will be equal in magnitude to the coefficient of the linear 

term (in order to balance the growth rate induced by the linear 

term). This because the lockdown measures will be able to 

satuarte the exponential growth. Briefly, we expect that the 

O.D.E. governing the dynamics of the SARS-CoV-2 is of the 

form (14) where c(𝑡̂) = α𝑡̂, for 𝑡̂, > 1/𝛼1 2⁄ . Indeed, for values of 

time 𝑡 ̂ ≃ 1, the lockdown term in Eq. (14) is able to balance the 

exponential grow, which is in agreement with our intuitive 

expectations. 

From Eq. (14) we get that the time derivative of N vanishes for 

N = Ns, with Ns satisfying the equation 

𝑁𝑠

𝐾𝑁
=

𝑎𝑡̂−𝑎𝑡̂2+1

𝑎𝑡̂
> 0                                                         (17) 

By taking into account the inequality reported in Eq. (15), we 

get that the O.D.E. (14) is valid in the range 

1

𝛼1/2 < 𝑡̂ <
(1+𝛼 4⁄ )1/2

𝛼1/2 +
1

2
                                        (18)     

Parameters KN and α depend on the virus in question and on the 

external conditions (e.g. in our case, the lockdown measures) to 

which the population is subject. In Eq. (14), the term -N2 KN is 

the term that tends to saturate the exponential growth. KN is 

constant (or decreases) in the course of time since the non-linear 

contribution becomes more and more important until saturating 

the exponential growth. In our model, the carrying capacity is 

kept constant. For large values of the carrying capacity, the 

solutions of Eq. (14) reach the plateau at the time 𝑡̂𝑀𝑎𝑥 given by 

the expression  

𝑡̂𝑀𝑎𝑥 ≡
𝑡𝑀𝑎𝑥

𝑡0
=

1

𝛼1 2⁄ +
1

2
                                                    (19)  

 

Notice that α is linked to µ. Indeed, as shown in Section 1, during 

the exponential period the COVID-19 grows according to the 

law (see Eq. (6)): 

 

𝑑𝑁

𝑑𝑡̂
≃ 𝜏̂−1𝑁  where 𝜏̂ ≡

𝜏̂
𝑡0

                                                       (20) 

Hence, we get 

𝛼 ≃
1

𝜏̂
=

log(𝑅0)

2𝜇̂
 where 𝜇̂ ≡

𝜇

𝑡0
                                     (21) 

We conclude this Section by mentioning that we may easily 

check (numerically) that, for systems having a large carrying 

capacity, the solution of Eq. (14) is well fitted by the expression 

𝑁 ≃ 𝐴𝑡exp(− (𝑡 − 𝑡0)2 𝜎⁄ ) with 𝜎 = 2𝑡0
2 𝛼⁄                       (22) 

The values of parameters A, t0 and σ depend on the virus in 

question. It is convenient to re-write Eq. (20) in dimensionless 

form  

𝑁 ≃ 𝐴̂𝑡̂ exp(− (𝑡̂ − 1)2 𝜎̂⁄ ) where 𝐴̂ ≡ 𝐴𝑡0 𝜎̂ ≡
𝜎

𝑡0
2           (23) 

To sum up, according to our model for COVID-19, the 

ascending behaviour of the total cases (i.e., the number of 

positive cases plus the cumulative number of recovered people 

plus the cumulative number of deaths) is given by the solution 

of Eq. (14) for 1 𝛼1 2⁄⁄  ≤ 𝑡̂ ≤ 𝑡̂Max. 

Notice that the determination of the O.D.E. (14) is of a 

fundamental importance if we wish also to describe the 

stochastic process (and the associated Fokker- Planck equation) 

where a white noise is added to this O.D.E. According to the 

literature nomenclature, we refer to the differential equation (14) 

as COVID-19 dynamic model8. 

5.3. Comparison between the Theoretical Predictions and 

Experimental Data 

For Italy and Belgium one observes two distinct phases related 

to the dynamics of the COVID-19, which we classify as before 

the adoption of the lockdown measures and after some days after 

the adoption of the lockdown measures. The question therefore 

naturally arises, of whether these two types of regime are 

separated by a well-defined transition. We shall see that this is 

indeed the case. We may identify three different periods, which 

may be classified as follows:  

1. The exponential period. As seen in Section 1, before the 

adoption of lockdown measures, the exponential trend is 

the intrinsic behaviour of the grow rate of the COVID-19.

 

8Viral dynamics is a field of applied mathematics concerned with describing the progression of viral infections within a host organism (see, for example, 

[27].)
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In this period the doubling time µ is a constant parameter 

versus time. 

1. The transient period. The transient period starts after having 

applied the severe lockdown measures. In this period, we 

observe a sort of oscillations (or fluctuations) of µ versus time. 

In this case the time variation of µ(t) reflects the behaviour of 

the time effective reproduction number, R(t), defined as the 

number of cases generated in the current state of a population, 

which does not have to be the uninfected state. Fig. 6 and Fig. 

7 show the behaviour of the parameter µ versus time for Italy 

and Belgium, respectively. The transient period ends when the 

last step of the exponential trend fits real data as good as the 

linear trend9. 

2. The bell-shaped period (or the post-transient period). In the 

bell-shaped period parameter µ is a (typical) function of time 

obtained by using Eq. (14). Several theoretical models can be 

used to study the post-transient period (e.g., by using 

Gompertz’s law [28]). Here, we use two mathematical models: 

the solution of the differential equation (14) and the logistic 

model (see, for example, Ref. [16]), and we compare these two 

theoretical models with real data for Italy and Belgium. 

(Figures 8, 9, 16) (see Appendix) compare the predictions of our 

model (blue lines) against the logistic model (red lines) for Italy, 

Belgium, and Luxembourg, respectively. Notice that the number 

of free parameters of these two models are exactly the same, 

since α and τ cannot be chosen arbitrarily. More specifically, 

a) The logistic model possesses two free parameters: K 

and t0L. Notice that parameter τ is not free since it is 

linked to the doubling time µ; 

b) Also our model possesses two free parameters: KN and 

t0. Notice that parameter α is linked to the doubling time 

µ (see Eqs (14) and (18)). 

(Figure 8, 9) compare the theoretical predictions, with the 

experimental data for Italy and Belgium updated to the 15th of 

May 2020. The values of the parameters τ , KN, and t0L for Eq. 

(14) and the parameters τ , t0L and K for the logistic function are 

reported in the figure captions. As we can see, for both Countries 

Eq. (14) fits well all the real data from the initial days, while the 

logistic model applies only to the first data. The curves reach the 

plateau at the time tMax given by Eq. (19). By inserting the values 

of the parameters, we get 

𝑡𝑀𝑎𝑥𝐼𝑇 ≃ 80 days and 𝑡𝑀𝑎𝑥𝐵𝐸 ≃ 60 days (24) 

corresponding to 𝑡𝑀𝑎𝑥𝐼𝑇 ≃ 21 April 2020 and 𝑡𝑀𝑎𝑥𝐵𝐸 ≃ 2 May 

2020 for Italy and Belgium, respectively. 

              
Figure 6: Italian transient period (from the 10th of March 2020 to the 24th of 

March 2020). During this period, the doubling time µ oscillates over time. µ0 

indicates the (constant) doubling time during the exponential period (for Italy 

𝜇0 ≃ 2.6 days). 

 

                
Figure 7: Belgian transient period (from the 17th of March 2020 to the 29th of 

March 2020). During this period, the doubling time µ oscillates over time.  µ0  

indicates the (constant) doubling time during the exponential period (for 

Belgium 𝜇0 ≃ 3.7 days). 

6. Modelling the COVID-19 - The Descending Phase 

Here, for the descending phase is intended the phase where the 

number of the positive cases starts to decrease10. So, our model 

cannot be used for describing also the descending phase since  

𝑁𝑡  is the number of the total cases and, during the descending 

phase, 𝑁𝑡 tends to reach the plateau. The objective of this section 

is to determine the trend of the curve of positive people during 

the descending phase. This task is accomplished by establishing

9A numerical condition may be established by using the χ2 test: the fittings of the two trends are considered both good if, for example, for both trends, the χ2-

tests get values ≥ 0.9. 

10We define the number of positive people as the number of people tested positive for COVID- 19, hence, by excluding the number of the deceased people 

and the number of people who recovered. 
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the appropriate equations for the recovered people and the 

deceased people for COVID-19. During the descent phase the 

number of active people over time must satisfy a conservation 

equation. This allows determining the time-evolution for the 

positive people. In the sequel, we denote with rt, dt, and nt the 

number of people released from the hospital at the time t, the 

total deaths, and the number of positive individuals at time t, 

respectively 

                          

Figure 8: Situation in Italy on 15 May 2020-before, and 65 days after, the 

adoption of lockdown measures. The black dots correspond to experimental 

data. The red dotted line corresponds to the situation in Italy before the adoption 

of the lockdown measures. The blue and the red solid lines correspond to the 

theoretical predictions for Italy according to the solution of Eq.  (14)  and the 

logistic model, respectively.  Solution of Eq. (14) fits well all the experimental 

data from the initial days (i.e., from the 1st of February 2020), while the logistic 

model applies only to the first days. The values of the parameters of Eq. (14) 

and the logistic function (10) are: 𝜏𝑙𝑇 ≃  3.8 days (𝜇𝑙𝑇 = 2.6 days), 

𝐾𝑁
𝑙𝑇 ≃355250, and 𝑡0𝐼𝑇 ≃72.5 days for Eq. (14), and 𝜏0𝐼𝑇 ≃3.8 days (𝜇𝑙𝑇  = 2.6 

days), 𝐾𝑙𝑇 = 225000, 𝑡0𝐿𝐼𝑇 = 53 days for the Logistic function. 

                  

Figure 9: Situation in Belgium on 15 May 2020-before, and 60 days after, the 

adoption of lockdown measures. The black dots correspond to real data. The 

blue dotted line corresponds to the situation in Belgium before the adoption of 

the lockdown measures. The blue and the red solid lines correspond to the 

theoretical predictions for Belgium according to the solution of Eq. (14) and the 

logistic model, respectively. Solution of Eq. (14) fits well all the experimental 

data from the initial days (i.e., from the 29th of February 2020), while the 

logistic model applies only to the first data. The values of the parameters of Eq. 

(14) and the logistic function (10) are: 𝜏𝐵𝐸 ≃  5.3 days (𝜇𝐵𝐸 = 3.7 days), 

𝐾𝑁
𝐵𝐸 ≃42626, and 𝑡0𝐵𝐸 ≃53.4 days for Eq. (14), and 𝜏𝐵𝐸 ≃5.3 days (𝜇𝐵𝐸 = 3.7 

days), 𝐾𝐵𝐸   = 111000, 𝑡0𝐿𝐵𝐸 = 39.5 days for the Logistic function, respectively. 

The zone I corresponds to the period before the adoption of the lockdown 

measures. 

                                

Figure 10: Italy situation. Theoretical predictions (blue line) against the 

experimental data (black circles) for the recovered people. 

                                       

Figure 11: Italy situation. Theoretical predictions (blue line) against the 

experimental data (black circles) for the deceased people. 

6.1 Number of the Recovered People 

We start with the recovered people previously hospitalised. Let 

us suppose that a hospital has 50 patients in intensive therapy, 

corresponding to its maximum availability capacity. If the 

hospital is unable to heal any patient, the growth rate of healed 

people is necessarily equal to zero. On the other hand, if the 

hospital is able to heal a certain number of people, the places 

previously occupied by the sick people will free and other 

patients affected by COVID-19 will be able to be hospitalized. 

In the latter case, the growth rate of the healed people will rise 

thanks to the fact that the hospital is able to heal more and more 

patients. This initial phase may be modelled by introducing into 

the dynamic equation the term +γrt, with rt indicating the 

number of the recovered people at the time t, previously 

hospitalized



𝑑𝑟𝑡

𝑑𝑡
= 𝜍𝑟𝑡                            (25) 

However, it is reasonable to suppose that ζ is constant for low 

values of r, whereas, when rt takes more and more large values, 

ζ is proportional to Ir, with Ir denoting the number of the 

infected people entering in the hospital (and not the total 

number of the infected people, which is indicated with nt). 

Hence, 

𝜁 = 𝛼𝑟 − 𝛽𝑟𝐼𝑟 > 0           (26) 

The sign minus in Eq. (24) is due to the fact that the recovered 

people will continue to grow linearly until when it reaches a 

maximum limit i.e. until when the hospital is no longer able to 

accept other sick people; this causes a reduction of people who 

recover. The competition between these two effects diminishes 

the combined growth rate. Hence, 

𝐼𝑟 <
𝛼𝑟

𝛽𝑟
            (27) 

where βr is linked to the hospital’s capacity to accept sick 

people. To sum up, 

𝑑𝑟𝑡

𝑑𝑡
= 𝛼𝑟𝑟(𝑡) − 𝛽𝑟𝐼𝑟(𝑡 − 𝜗)𝑟(𝑡) where 𝐼𝑟(𝑡 − 𝜗) = 𝑟(𝑡) +

𝐷𝑟(𝑡 + 𝜗1) )                                                                        (28) 

r(t) is the number of the recovered people, previously 

hospitalised, at the time t who have been infected, in average, 

at the time 𝑡 − 𝜗 and 𝐷𝑟(𝑡 + 𝜗1) denotes the number of 

deceased people at the hospital at the time 𝑡 + 𝜗1 who have 

been infected, in average, at the time 𝑡 − 𝜗 (in general, 𝜗1 ≠ 0. 

Clearly, the number of the recovered people, previously 

hospitalised, at the step n (i.e. rn), is linked to the total number 

of the recovered people previously hospitalised at the step n 

(denoted by hn) by the relation 

𝑟𝑛 = ℎ𝑛 − ℎ𝑛−1 or ℎ𝑛 ∑ 𝑟𝑛
𝑛=𝑡/∆𝑡
𝑛=1  (with ∆𝑡 ≃ 1 day)               (29) 

where we have set h0 = 0 

6.1.1. Approximated O.D.E. for the Recovered People 

Previously Hospitalised 

We assume that all the infected people entering in the hospitals 

will heal. So 

𝐷𝑟(𝑡 + 𝜗1) ≈ 0 hence 𝐼𝑟(𝑡 − 𝜗) ≃ 𝑟(𝑡)                (30) 

The final O.D.E. for the recovered people reads then 

𝑑𝑟𝑡

𝑑𝑡
≃ 𝛼𝑟 (1 −

1

𝐾𝑟
𝑟𝑡) 𝑟𝑡     (31) 

where 𝐾𝑟  is the hospital’s capacity, which we assume to be a 

time-independent parameter. It should be kept in mind that, 

under this approximation, the equation for the number of 

recovered people is in itself and independent of the equations 

for the other variables (i.e. for nt and dt)12. 

6.1.2. O.D.E. for the Total Recovered People 

At the first approximation, the O.D.E. for the total recovered 

people Rt (i.e. the total individuals having survived the disease) 

is trivially obtained by considering that the rate of Rt is 

approximatively proportional to the number of the infected 

people nt at time t i.e.13. 

𝑑𝑅𝑡

𝑑𝑡
= 𝜒𝑛𝑡      (32) 

However, it is useful to clarify the following. In Eqs (27), ht 

stands for the total number of the recovered people previously 

hospitalised whereas the variable Rt in Eq. (30) is the total 

number of the recovered people (i.e. the number of the 

recovered people previously hospitalised, plus the number of 

the asymptomatic people, plus the infected people who have 

been recovered without being previously hospitalised). The 

natural question is: ”how can we count Rt and compare this 

variable with the real data ?”. The current statistics, produced 

by the Ministries of Health of various Countries, concern the 

people released from the hospitals. A part from Luxembourg 

(where the entire population has been subject to the COVID-

19-test), no other Countries are in a condition to provide 

statistics regarding the total people recovered by COVID-19. 

Hence, it is our opinion that the equation for Rt, is not useful 

since it is practically impossible to compare Rt with the 

experimental data. 

6.2. Equation for the Deceased People 

The rate of deceased people per unit time is modelled by the 

following dimensionless equation 

 
𝑑

𝑑𝑡̂
𝑑𝑡 = 𝛼𝑑𝑛(𝑡−𝑡𝑑) − 𝛽𝑑𝑛(𝑡−𝑡𝑑)

2    (33) 

The meaning of Eq. (31) is the following. Manifestly, the rate 

of deaths is proportional to the number of active people

 

 

 

11We draw the attention of the reader that in this manuscript Nt (capital letter) represents the number of the total cases at time t, whereas nt (small letter) refers 

to the number of the positive individuals at time t. 



However, individuals infected by SARS-CoV-2 do not die 

instantly since the rate of deaths at time t is proportional to the 

people who were infected at an earlier time t − td (td > 0) with 

td denoting the time-delay. We indicate with αd the, time-

independent, constant proportional to the increase of the deaths 

dt. The second term, −𝛽𝑑𝑛(𝑡−𝑡𝑑)
2 , models the presence of the 

lockdown measures, having the effect of saturating 

the rate of infected people and, consequently, of deaths. Indeed, 

in the absence of lockdown measures, we may approximatively 

write 

𝑑

𝑑𝑡̂
𝑑𝑡 = 𝛼𝑟𝑛(𝑡−𝑡𝑑)                 (34) 

with αr denoting a positive constant. The purpose of the 

lockdown measures is to decrease the number of infected 

people, and therefore deaths. We may assume that the effect of 

the lockdown measures is proportional to 𝑛(𝑡−𝑡𝑑) such as to 

dampen the linear growth of the mortality rate. In other terms, 

we get 

𝛼𝑟 → 𝛼𝑟 − 𝛽𝑟𝑛(𝑡−𝑡𝑑)     (35) 

which combined with Eq. (34) gives Eq. (33). 

6.3 Equation for the Positive People 

Of course, during the descent phase, the number of active 

people nt satisfies a simple law of conservation: If we are in the 

situation where there are no longer new cases of people tested 

positive for COVID-19 and if we assume that the active people 

cannot leave their country of origin (or else, if they do, they will 

be rejected by the host Country), then the number of infected 

people cannot but decrease either because some people are 

deceased or because others have been recovered. In 

mathematical terms 

𝑛𝑡 = 𝑛0 − (ℎ𝑡 − ℎ0) − (𝑑𝑡 − 𝑑0) = 𝑁𝑀𝑎𝑥 − ℎ𝑡 − 𝑑𝑡             (36) 

 with h0, d0 and t0 denoting the values of ht, dt and nt evaluated 

at the time 

t = tMax (see Eq. (19) i.e., the time that maximises the number 

of the total cases), respectively. It should be noted that the 

conservation law (36) applies only when there are no longer 

new cases of people tested positive to COVID- 1914. Here, 

by the descending phase we mean the phase where Eq. (36) 

applies. To sum up, the equations describing the descending 

phase are 

 
𝑑

𝑑𝑡̂
𝑟𝑡 = 𝛼𝑟𝑟𝑡 (1 −

𝑟𝑡

𝐾𝑟
)  with 𝑟𝑡=𝑡𝑀𝑎𝑥

= 𝑟0                (37) 

𝑑

𝑑𝑡̂
𝑑𝑡 = 𝛼𝑑𝑛(𝑡−𝑡𝑑) − 𝛽𝑑𝑛(𝑡−𝑡𝑑)

2  with 𝑑𝑡=𝑡𝑀𝑎𝑥
= 𝑑0 

𝑛𝑡 = 𝑁𝑀𝑎𝑥 − ℎ𝑡 − 𝑑𝑡  with 𝑛∞ = 0 

ℎ𝑡 = ∑ 𝑟𝑛
𝑛=𝑡/∆𝑡
𝑛=1    with ∆𝑡 ≃ 1 day 

with tMax given by Eq. (19). Notice that the first two equations 

of system (37) are valid also during the ascending-phase. Of 

course,  

in this case, the initial conditions are rt=0 = 0, dt=0 = 0 and nt=0. 

Hence, during the ascending phase the evolution equations are 

𝑑

𝑑𝑡̂
𝑟𝑡 = 𝛼𝑟𝑟𝑡 (1 −

𝑟𝑡

𝐾𝑟
)  with 𝑟𝑡=0 = 0                    (38) 

𝑑

𝑑𝑡̂
𝑑𝑡 = 𝛼𝑑𝑛(𝑡−𝑡𝑑) − 𝛽𝑑𝑛(𝑡−𝑡𝑑)

2  with 𝑑𝑡=0 = 0 

𝑛𝑡 = 𝑁𝑡 − ℎ𝑡 − 𝑑𝑡  with 𝑛𝑡=0 = 0 

𝑑

𝑑𝑡̂
𝑁𝑡 = 𝛼𝑁𝑡 (1 −

𝑁𝑡

𝐾𝑁
) − (

𝛼𝑡 2̂−1

𝑡̂
) 𝑁𝑡  

ℎ𝑡 = ∑ 𝑟𝑛
𝑛=𝑡/∆𝑡
𝑛=1    with ∆𝑡 ≃ 1 day 

According to our expectations, by solving numerically 

system (38), with good 

approximation, we get 

𝑑𝑡 ∝ 𝑛(𝑡−𝑡𝑑)      (39) 

 

12Eq. (31) models a hospital’s ability to heal people and, by no means, it must be linked to the number of people tested positive for COVID-19 or to the 

mortality rate caused by the SARS-CoV-2. 

13Notice that Eq. (32) is the dynamic equation for the total recovered people adopted in the Susceptible-Infectious-Recovered-Deceased-Model (SIRD-model) 

[29]. The comparison between our model with the SIRD-model will be found soon in Ref. [30]. 

14So, Eq. (36) does not apply necessarily as soon as the number nt (the number of people tested positive for COVID-19) starts to decrease. Indeed, it may 

happen that nt decreases because, for example, the number of new cases of people tested positive is less than the number of the people who have recovered in 

the meantime. Conservation law (36) applies only from the moment where the number of new cases of people tested positive is strictly equal to zero. 

 



Next, we find the numerical solution of systems (37)-(38) for 

Italy and Belgium. A similar analysis for Luxembourg is 

reported in Appendix. 

6.4. Theoretical Predictions for the Descending Phase 

In this subsection, we report the numerical solutions of Eqs 

(37)-(38) for Italy and Belgium. The solution for Luxembourg 

can be found in the Appendix. Fig. (10) and (11) concern the 

Italian situation. They show the numerical solution of Eqs (37)-

(38) for the number of recovered people and deaths, 

respectively. These theoretical predictions are plotted against 

the experimental data reported in the (Table 1). According to 

the theoretical predictions, for Italy we get tIT = 12 days. (Figure 

12), illustrates the descendant-phase for Italy. 

          

 

 

 

 

 

 

 

Figure 12: The descending phase for Italy. According to the theoretical 

predictions, after two months the lockdown measures may heavily be lightened 

and we can return to normal work. The estimated time-delay is 𝑡𝑇𝑑 = 12 days 

see Eq. (37). 

(Figure 13, 14) refer to the Belgian situation. The figures 

illustrate the numerical solutions of Eqs (37)-(38) for the 

number of recovered people and deaths, respectively. The 

theoretical predictions are plotted against the experimental data 

reported in the (Table 3). According to the theoretical 

predictions, for Belgium we get tBEd = 8.8 days. (Figure 15) 

shows the descendant-phase for Belgium. 

             

Figure 13: Belgian situation. Theoretical predictions (blue line) against the 

experimental data (black circles) for the recovered people. 

                 
Figure 14: Belgian situation. Theoretical predictions (blue line) against the 

experimental data (black circles) for the deceased people. 

                    
Figure 15: The descending phase for Belgium. According to the theoretical 

predictions, after one month the lockdown measures may heavily be lightened 

and we can return to normal work.  The estimated time delay is 𝑡𝐵𝐸𝑑  = 8.8   

days see Eq. (37). 

 

Table 3: Situation in Belgium on 15 May 2020. Columns report the number of 

active people (currently infected by SARS-CoV-2), the number of recovered 

people, and the number of deceased people. 

Date Active Recovered Deceased Total cases 

29-Feb 1 0 0 1 

1-Mar 1 0 0 1 

2-Mar 6 0 0 6 

3-Mar 13 0 0 13 

4-Mar 23 0 0 23 

5-Mar 50 0 0 50 

6-Mar 109 0 0 109 

7-Mar 169 0 0 169 

8-Mar 200 0 0 200 

9-Mar 239 0 0 239 

10-Mar 267 0 0 267 

11-Mar 311 0 3 314 
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12-Mar 396 0 3 399 

13-Mar 556 0 3 599 

14-Mar 686 0 4 689 

15-Mar 881 1 4 886 

16-Mar 1052 1 5 1058 

17-Mar 1218 20 5 1243 

18-Mar 1441 31 14 1486 

19-Mar 1619 155 21 1795 

20-Mar 2016 204 37 2257 

21-Mar 2485 263 67 2815 

22-Mar 2986 340 75 3401 

23-Mar 3305 350 88 3743 

24-Mar 3737 410 122 4269 

25-Mar 4234 547 178 4937 

26-Mar 5340 675 220 6235 

27-Mar 6398 858 289 7284 

28-Mar 7718 1063 353 9134 

29-Mar 9046 1359 431 10836 

30-Mar 9859 1527 513 11899 

31-Mar 10374 1696 705 12775 

1-Apr 11004 2132 828 13964 

2-Apr 11842 2495 1011 15348 

3-Apr 12755 2872 1143 16770 

4-Apr 13901 3247 1283 18431 

5-Apr 14493 3751 1447 19691 

6-Apr 15196 3986 1632 20814 

7-Apr 16002 4157 2035 22194 

8-Apr 16482 4681 2240 23403 

9-Apr 17296 5164 2523 24983 

10-Apr 18080 5568 3019 26667 

11-Apr 18686 5986 3346 28018 

12-Apr 19584 6463 3600 29647 

13-Apr 19979 6707 3903 30589 

14-Apr 20094 6868 4157 31119 

15-Apr 22025 7107 4440 33573 

7. Conclusions 

In this work we studied the spread of SARS-CoV-2 until 

when the strict measures have been adopted (i.e. until 16th 

May 200). The dynamics of COVID-19 when the population 

is under less restrictive lockdown measures will be subject 

of future studies. Through fitting techniques previously 

performed, caused by viruses, including SARS-CoV-2. The 

solution of Eq. (14) provides the number of the total case in 

time. Successively, we compared the theoretical predictions, 

provided by the solution of Eq. (14) and by the logistic model 

(see Eq. (7)), with the real data for Italy and Belgium (for 

Luxembourg see Appendix). We saw that the solution of Eq. 

(14) is in good agreement with the experimental data since 

the beginning of the appearance of the COVID-19; this is not 

the case for the logistic model which applies only to the few 

last days. We found the days where the maximum number 

infected people by COVID-19 will be reached in Italy and 

Belgium by parametrising the solution of Eq. (41) with 

experimental data: we get, tMaxIT 21 April 2020 and tMaxBE 2 May 

2020 for Italy and Belgium, respectively. 

We also noted, empirically, that the infection process caused by 

SARS-CoV-2 may be divided into three qualitatively different 

periods; i.e., the exponential period, the transient period and the 

bell-shaped period (or the post-transient period). The solution of 

Eq. (14) allows defining more precisely these three periods. 

Indeed, we may classify the above periods as follows 

The exponential period  for  0 ≤ 𝑡̂ ≤ 𝑡̂𝐿𝑀 (40)  

The transient period  for  𝑡̂𝐿𝑀 < 𝑡̂ ≤ 𝑡̂𝑓𝑙𝑒𝑥  

The bell-shaped period  for  𝑡̂ > 𝑡̂𝑓𝑙𝑒𝑥  

With tLM indicating the dimensionless time when the 

lockdown measures are applied and tflex the dimensionless 

inflection point of the solution of Eq. (14), respectively. It is 

easily checked that, for large values of KN, the value of tˆf lex 

satisfies, approximatively, the equation 

𝛼𝑡̂3
𝑓𝑙𝑒𝑥 − 2𝛼𝑡̂2

𝑓𝑙𝑒𝑥 + (𝛼 − 3)𝑡̂𝑓𝑙𝑒𝑥 + 2 ≃ 0 with 𝑡̂𝑓𝑙𝑒𝑥 ≡
𝑡𝑓𝑙𝑒𝑥

𝑡0
  (41) 

Hence, according to Eq. (41), the transient period ended on 31 

March 2020 for Italy and on 7 April 2020 for Belgium, 

respectively. The second part of the work is devoted to 

modelling the descending phase, i.e. the decrease of the number 

of people tested positive for COVID-19. Also in this case, we 

proposed a new set of dynamic differential equations that we 

solved numerically. The solution of Eqs (37) (and Eq. (38)) 

provided valuable information such as the duration of the 

COVID-19 epidemic in a given Country and therefore when it 

will be possible to return to normal life. 
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 9. Appendix: Comparison between the Theoretical 

Predictions of Eq. (14) and Experimental Data for 

Luxembourg 

We have stressed the main difference between the closed 

systems and the open systems. Luxembourg, due to the 

particularly severe lockdown measures adopted by the 

government, may be considered, with good approximation, as a 

closed system (628108 inhabitants, most of them concentrated 

in only one town). Indeed, right from the start, the city of 

Luxembourg was literally closed and citizens were unable to 

enter and leave the city freely (people who had to enter in the 

city for working reasons were obliged to undergo each time the 

test that, of course, had to result negative). 

Italy, on the other hand may be considered, with a god 

approximation, as an open system (60317116 inhabitants 

dislocated in all the Country). In Italy, especially during the 

initial phase, the citizens of northern Italy moved freely to the 

south of Italy, by train, by plans or by car. Only in a second time 

the Italian government decided to introduce much more 

restrictive measures concerning the movement of citizens from 

one region to another. 

For the reason mentioned above, it is our opinion that it is very 

interesting to analyse these two Countries, Luxembourg and 

Italy, which are so different with each other. In this Appendix 

we report the comparison between the theoretical predictions of 

the COVID-19 model (14) and the real data for Luxembourg 

update to 15 May 2020 (see (Figure 16)). In the columns of (table 

5) we can find the number of active people (currently infected 

by SARS-CoV-2), the number of recovered people, and the 

number of deceased people, respectively. The experimental data 

have been found in the databases [31, 32]. Luxembourg reached 

its peak on 12 April 2020. 

 

Table 4: Situation in Belgium on 15 May 2020. Columns report the number of 

active people (currently infected by SARS-CoV-2), the number of recovered 

people, and the number  of deceased people. 

Date Active Recovered Deceased Total cases 

16-Apr 22390 7562 4857 34809 

17-Apr 23014 7961 5163 36138 

18-Apr 23346 8384 5453 37183 

19-Apr 24056 8757 5683 38496 

20-Apr 25260 8895 5828 39983 

21-Apr 25296 9002 5998 40956 

22-Apr 26194 9433 6262 41889 

23-Apr 26507 9800 6490 42797 

24-Apr 27492 10122 6679 44293 

25-Apr 27991 10417 6917 45325 

26-Apr 28255 10785 7094 46134 

27-Apr 28602 10878 7207 46687 

28-Apr 29060 10943 7331 47334 

29-Apr 29075 11283 7501 47859 

30-Apr 29349 11576 7594 48519 

1-May 29437 11892 7703 49032 

2-May 29541 12211 7765 49517 

3-May 29753 12309 7844 49906 

4-May 29965 12378 7924 50267 

5-May 30052 12441 8016 50509 

6-May 29711 12731 8339 50781 

7-May 30025 12980 8415 51420 

8-May 30289 13201 8521 52011 

9-May 30604 13411 8581 52596 

10-May 30783 13642 8656 53081 

11-May 31045 13697 8707 53449 

12-May 31286 13732 8761 53779 

13-May 31201 13937 8843 53981 

14-May 31274 14111 8903 54288 

15-May 31384 14301 8959 54644 

16-May 31524 14460 9005 54986 

17-May 31598 14630 9052 55280 

18-May 31822 14657 9080 55559 

19-May 31996 14687 9108 55791 

20-May 31986 14847 9150 55983 

21-May 32061 14988 9186 56235 

22-May 32176 15123 9212 56810 

23-May 32418 15155 9237 56810 

24-May 32540 15272 9280 57092 

25-May 32733 15297 9312 57342 

26-May 32801 15320 9334 57455 

27-May 32763 15465 9364 57592 

28-May 32889 15572 9388 57849 
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Figure 16: Situation in Luxembourg on 15 May 2020. The black dots 

correspond to real data. The red dotted line corresponds to the situation in 

Luxembourg before the adoption of the lockdown measures. The blue and the 

red solid lines correspond to the theoretical predictions for Luxembourg 

according to the solution of Eq. (14) and the logistic model, respectively.  

Solution of Eq. (14) fits well all the experimental data from the initial days (i.e., 

from the 29th of February 2020), while the logistic model applies only to the 

first data. The values of the parameters of Eq. (14) and the logistic function (10) 

are: 𝜏𝐿𝑈𝑋 c3.2 days (𝜇𝐿𝑈𝑋= 2.2 days), 𝐾𝑁
𝐿𝑈𝑋 ≃6880, and 𝑡0𝐿𝑈𝑋 ≃40 days for Eq. 

(14), and 𝜏𝐿𝑈𝑋  3.2 days (𝜇𝐿𝑈𝑋 = 2.2 days), 𝐾𝐿𝑈𝑋 = 3950, 𝑡0𝐿𝐿𝑈𝑋 = 30 days for 

the Logistic function, respectively. The zone I corresponds to the period before 

the adoption of the lockdown measures. 

Table 5: Situation in Luxembourg on 15 May 2020. Columns provide the 

number of active people (currently infected by  SARS-CoV-2), the number of 

recovered people, and the number  of deceased people. 

Date Active Recovered Deceased Total cases 

29-Feb 1 0 0 1 

1-Mar 1 0 0 1 

2-Mar 1 0 0 1 

3-Mar 1 0 0 1 

4-Mar 1 0 0 1 

5-Mar 2 0 0 2 

6-Mar 3 0 0 4 

7-Mar 4 0 0 4 

8-Mar 5 0 0 5 

9-Mar 5 0 0 5 

10-Mar 7 0 0 7 

11-Mar 7 0 0 7 

12-Mar 26 0 0 26 

13-Mar 33 0 1 34 

14-Mar 50 0 1 51 

15-Mar 76 0 1 77 

16-Mar 80 0 1 81 

17-Mar 139 0 1 140 

18-Mar 201 0 2 203 

19-Mar 325 6 4 335 

20-Mar 474 6 4 484 

21-Mar 656 6 8 670 

22-Mar 780 10 8 798 

23-Mary 857 10 8 875 

24-Mar 1081 10 8 1099 

25-Mar 1315 10 8 1333 

26-Mar 1434 10 9 1453 

27-Maryy 1550 40 15 1605 

28-Mar 1773 40 18 1831 

29-Mar 1889 40 21 1950 

30-Mar 1926 40 22 1988 

31-Mar 2115 40 23 2178 

01-Apryy 2250 40 29 2319 

2-Apr 2417 40 30 2487 

3-Apr 2081 500 31 2612 

4-Apr 2198 500 31 2729 

5-Apr 2268 500 36 2804 

6-Apr 2302 500 41 2843 

7-Apr 2426 500 44 2970 

8-Apr 2488 500 46 3034 

9-Apr 2563 500 52 3115 

10-Apr 2669 500 54 3223 

11-Apr 2708 500 62 3270 

12-Apr 2715 500 66 3281 

13-Apr 2725 500 67 3292 

14-Apr 2740 500 67 3307 

15-Apr 2778 520 69 3373 

Y Attention on the 23rd the figures instead of being given at 9 am are given at 

5 pm. 

YY Including 1 evacuated from France. 

Table 6: Situation in Luxembourg on 15 May 2020. Columns provide the 

number of active people (currently infected by SARS-CoV-2), the number of 

recovered people, and the number  of deceased people. 

Date Active Recovered Deceased Total cases 

16-Apr 1008 2368 68 3444 

17-Apr 919 2489 72 3480 

18-Apr 858 2607 72 3537 

19-Apr 799 2678 73 3550 

20-Apr 759 2724 75 3558 

21-Apr 735 2805 78 3618 

22-Apr 689 2885 80 3654 

23-Apr 619 2963 83 3665 
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24-Apr 582 3028 85 3695 

25-Apr 539 3087 85 3711 

26-Apr 532 3103 88 3723 

27-Apr 520 3121 88 3729 

28-Apr 531 3121 89 3741 

29-Apr 546 3134 89 3769 

30-Apr 481 3213 90 3784 

1-May 497 3213 92 3802 

2-May 402 3318 92 3812 

3-May 349 3379 96 3824 

4-May 327 3405 96 3828 

5-May 332 3412 96 3840 

6-May 301 3452 98 3851 

7-May 254 3505 100 3859 

8-May 245 3526 100 3871 

9-May 226 3550 101 3877 

10-May 199 3586 101 3886 

11-May 185 3602 101 3888 

12-May 182 3610 102 3894 

13-May 172 3629 103 3904 

14-May 147 3665 103 3915 

15-May 137 3682 104 3923 

16-May 127 3699 104 3930 

17-May 136 3702 107 3945 

18-May 125 3715 107 3947 

19-May 131 3718 109 3958 

20-May 134 3728 109 3971 

21-May 130 3741 109 3980 

22-May 124 3748 109 3981 

23-May 123 3758 109 3990 

24-May 115 3767 110 3992 

25-May 102 3781 110 3993 

26-May 102 3783 110 3995 

27-May 100 3791 110 4001 

28-May 95 3803 110 4008 

 

9.1. The Descending Phase for Luxembourg 

(Figures 17, 18) refer to the Luxembourg situation. The 

figures illustrate the numerical solutions of Eqs (37) -(38) 

for the number of recovered people and deaths, 

respectively. The theoretical predictions are plotted 

against the experimental data, which can be found in the 

(Table 5 Figure 19) shows the descending phase for 

Luxembourg. 

             
Figure 17: Luxembourg situation. Theoretical predictions (blue line) against 

the experimental data (black circles) for the recovered people. 

 

 
Figure 18: Luxembourg situation. Theoretical predictions (blue line) against 

the experimental data (black circles) for the deceased people. 

 

 

 

Figure 19: The descending phase for Luxembourg. According to the theoretical 

predictions, after one month the lockdown measures may heavily be lightened and 

we can return to normal work.  The estimated t imedelay is 𝑡𝐿𝑈𝑋𝑑 = 15 days see 

Eq. (37). 
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